

Regelgeräte BM0

Busschnittstelle Modbus RTU

Busschnittstelle BACnet MS/TP

Busschnittstelle MP-Bus

Regelkomponente mit dynamischem Transmitter und auswählbarer Busschnittstelle, Modbus RTU, BACnet MS/TP oder MP-Bus

Kompakte Baueinheit für VVS-Regelgerät TVR, TVJ, TVT, TZ-Silenzio, TA-Silenzio, TVZ, TVA, TVM

- Regler, dynamischer Wirkdrucktransmitter und Stellantrieb in einem Gehäuse
- Einsatz in raumlufttechnischen Anlagen, nur bei sauberer Luft
- Volumenströme q_{vmin} und q_{vmax} werkseitig voreingestellt und im Regler als veränderliche Parameter gespeichert
- Hohe Datentransparenz durch standardisierte Buskommunikation Modbus RTU, BACnet MS/TP und MP-Bus
- Sollwertvorgaben, Zwangssteuerungen, Parameteranpassung über Buskommunikation
- Servicezugang für Handeinstellgeräte und PC-Konfigurationssoftware

Allgemeine Informationen	2	Varianten	6
Funktion	3	Technische Daten	7
Ausschreibungstext	4	Produktdetails	14
Bestellschlüssel	5	Legende	2′

Allgemeine Informationen

Anwendung

- Regelungstechnische Kompletteinheiten für VVS-Regelgeräte
- Dynamischer Differenzdrucktransmitter, Reglerelektronik und Stellantrieb in einem Gehäuse vereinigt
- Unterschiedliche Regelaufgaben durch entsprechende Sollwert-Vorgabe
- Raumtemperaturregler, Gebäudeleittechnik,
 Luftqualitätsregler und andere steuern die variable
 Volumenstromregelung durch Vorgabe von Sollwerten über
 Kommunikationsschnittstelle oder Analogsignal
- Zwangssteuerungen für die Aktivierung von q_{vmin}, q_{vmax},
 Absperrung, Offenstellung über Modbus/BACnet-Register oder Schalter bzw. Relais möglich
- Volumenstrom-Istwert steht als Netzwerkdatenpunkt oder lineares Spannungssignal zur Verfügung
- Klappenstellung steht als Netzwerkdatenpunkt zur Verfügung
- Die übliche Filterung in Komfortklimaanlagen ermöglicht den Reglereinsatz in der Zuluft ohne zusätzliche Staubschutzmaßnahmen
- Konfiguration des Reglers und der Kommunikationsparameter mit Servicetool ZTH EU und PC-Tool

Bei starkem Staubanfall in den Räumen

 Entsprechende Abluftfilter vorschalten, da zur Volumenstrommessung ein Teilvolumenstrom durch den Transmitter geleitet wird

Bei Verschmutzung der Luft mit Staub, Flusen oder klebrigen Bestandteilen

Eine Anbaugruppe mit statischem Differenzdrucktransmitter verwenden

Regelkonzept

- Volumenstromregler arbeitet kanaldruckunabhängig
- Druckschwankungen bewirken keine bleibenden Volumenstromabweichungen
- Eine Totzone (Hysterese), innerhalb der die Stellklappe nicht bewegt wird, sorgt für stabile Regelung
- Volumenstrombereich werkseitig im Regler parametriert (q_{vmin}: minimaler Volumenstrom, q_{vmax}: maximaler Volumenstrom)
- Betriebsparameter werden per Bestellschlüssel festgelegt und werkseitig parametriert

Betriebsarten

Variabler Betrieb (V): Sollwertvorgabe über Modbus

Schnittstelle

Kommunikationsschnittstelle

- Modbus RTU, RS485 (Werkseinstellungen)
- BACnet MS/TP, RS485
- MP-Bus
- Datenpunkte siehe Buslisten

Alternativ

- Analogschnittstelle mit einstellbarem Signalspannungsbereich
- Analogsignal für Volumenstrom-Sollwert
- Analogsignal für Volumenstrom-Istwert (Werkseinstellung) Hinweis
- Schnittstellentyp werkseitig voreingestellt
- Bauseitig durch Servicetools einstellbar

Signalspannungsbereich

Bei Nutzung der Analogschnittstelle (über PC-Tool einstellbar)

- 0 10 V DC
- 2 10 V DC

Bauteile und Eigenschaften

- Transmitter nach dynamischem Messprinzip
- Überlastsicherer Antrieb
- Vorinstallierte Anschlussleitung am Regler
- Serviceschnittstelle zum Anschluss von Servicetools
- Achsenklemmvorrichtung
- Kontrollleuchten zur Erkennung des Betriebszustands
- Adressierungstaste zur Einstellung von Teilnehmeradressen bei Busbetrieb
- Speisung und Kommunikation nicht galvanisch getrennt

Betriebsparameter

- $q_{vmin} = 0 100 \%$ vom Nennvolumenstrom q_{vNenn} einstellbar
- q_{vmax} = 20 − 100 % vom Nennvolumenstrom q_{vNenn} einstellbar

Ausführung

- LMV-D3-M/B-J6 TR mit Anschlussbuchse RJ12
- NMV-D3-M/B-J6 TR mit Anschlussbuchse RJ12

Typ LMV-D3-M/B-J6 TR für Volumenstromregler

TVR, TZ-Silenzio, TA-Silenzio, TVZ, TVA, TVM

Typ NMV-D3-M/B-J6 TR für Volumenstromregler

- TVJ
- TVT bis 100 × 300 bzw. 800 × 400 mm

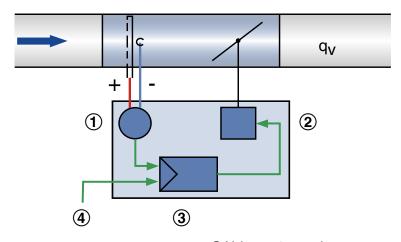
Inbetriebnahme

- Aufgrund der werkseitig eingestellten Volumenströme ist stets darauf zu achten, dass der Einbau der Regelgeräte nur an den vorgesehenen Stellen erfolgt
- Analogschnittstelle: Analoge Ansteuerung muss bauseits über PC-Tool eingestellt werden
- Modbus/BACnet/MP-Bus-Schnittstelle: zusätzliche Inbetriebnahmeschritte erforderlich
- Betriebsparameter kundenseitig anpassbar (Tool ZTH EU)

Ergänzende Produkte

2/21

Einstellgerät Typ ZTH (Bestellschlüssel AT-VAV-B)


Funktion

Charakteristisch für Volumenstrom-Regelgeräte ist ein geschlossener Regelkreis zur Regelung des Volumenstroms, das heißt Messen – Vergleichen – Stellen.

Die Messung des Volumenstroms erfolgt durch Messung eines Differenzdrucks (Wirkdrucks). Dies geschieht über einen Differenzdrucksensor. Ein integrierter Differenzdrucktransmitter setzt dabei Wirkdruck in ein Spannungssignal um. Der Volumenstrom-Istwert steht als Spannungssignal zur Verfügung. Durch die werkseitige Justage entsprechen 10 V DC immer dem Nennvolumenstrom (q_{vNenn}).

Der Volumenstrom-Sollwert wird von einem übergeordneten Regler (z. B. Raumtemperaturregler, Luftqualitätsregler, Gebäudeleittechnik) vorgegeben. Die variable Volumenstromregelung erfolgt zwischen q_{vmin} und q_{vmax}. Die Übersteuerung der Raumtemperaturregelung durch Zwangsschaltungen, beispielsweise Absperrung, ist möglich. Der Regler vergleicht den Volumenstrom-Sollwert mit dem aktuellen Istwert und steuert der Regelabweichung entsprechend den internen Stellantrieb.

Funktionsprinzip

- ① Differenzdrucktransmitter
- ② Stellantrieb

- ③ Volumenstromregler
- Sollwertsignal

Ausschreibungstext

Dieser Ausschreibungstext beschreibt die generellen Eigenschaften des Produkts.

Kategorie

- Compactregler für Volumenstrom
- Regelung eines konstanten oder variablen Volumenstrom-Sollwerts
- Elektronischer Regler zur Aufschaltung einer Führungsgröße und Abgriff eines Istwerts zur Einbindung in eine Modbus oder BACnet basierte Gebäudeleittechnik
- Istwert auf Nennvolumenstrom bezogen, dadurch vereinfachte Inbetriebnahme und nachträgliche Verstellung

Anwendung

 Dynamischer Transmitter für saubere Luft in raumlufttechnischen Anlagen

Versorgungsspannung

24 V AC/DC

Stellantrieb

Integriert; langsamlaufend (Laufzeit ca. 120 – 150 s f
ür 90°)

Einbaulage

Beliebig

Schnittstelle/Ansteuerung

- Modbus RTU (RS-485)
- BACnet MSTP (RS-485)
- MP-Bus
- Analoger Hybridbetrieb
- Speisung und Kommunikation nicht galvanisch getrennt
- Terminierung zuschaltbar

Anschluss

Anschlussleitung mit 6 Adern

Schnittstelleninformation

- Modbus-BACnet-MP-Bus Register
- Volumenstrom Soll- und Istwert, Klappenstellung, Fehlerstatus u. a.

Sonderfunktionen

- Aktivierung V_{min}, V_{max}, Geschlossen, offen durch Modbus-BACnet-MP-Bus-Register
- Optional aktivierbare Betriebsarten: Open-Loop: Stellantriebe mit Luftvolumenstrommessung

Parametrierung

- Für VVS-Regelgerät spezifische Parameter werkseitig parametriert
- Betriebswerte V_{min}, V_{max} und Schnittstellentyp werkseitig parametriert
- Nachträgliche Anpassung durch Modbus-BACnet-MP-Bus-Registerzugriffe oder optionale Tools: Einstellgerät, PC-Software (jeweils Kabelgebunden) möglich, NFC-Bluetooth je nach Serienstand

Auslieferungszustand

- Elektronischer Regler werkseitig auf Regelgerät montiert
- Werkseitige Parametrierung
- Funktionsprüfung unter Luft; mit Aufkleber bescheinigt

Bestellschlüssel

1 Serie

TVR VVS-Regelgerät

2 Dämmschale

Keine Eintragung: ohne **D** mit Dämmschale

3 Material

Verzinktes Stahlblech (Grundausführung)

P1 Oberfläche pulverbeschichtet RAL 7001, silbergrau

A2 Edelstahlausführung

5 Nenngröße [mm] 100, 125, 160, 200, 250

6 Zubehör

Volumenstrom

Keine Eintragung: ohne

D2 Doppellippendichtung beidseitig

G2 Gegenflansch beidseitig

BM0 Compactregler dynamischer Transmitter, Modbus RTU,

10 Betriebswerte zur werkseitigen Einstellung Volumenströme in m³/h oder l/s

7 Anbauteile (Regelkomponente)

q_{vkonst} (nur bei Betriebsart F)

V variabel (Sollwertbereich)

BACnet MS/TP

8 Betriebsart

q_{vmin} (nur bei Betriebsart V, M)

q_{vmax} (nur bei Betriebsart V, M)

11 Volumenstromeinheit

m³/h l/s

Bestellbeispiel: TVT/200×100/D2/BM0/M/200-800 m³/h

Dämmschale	ohne
Material	verzinktes Stahlblech
Nenngröße	200 × 100 mm
Zubehör	Doppellippendichtung beidseitig
Anbauteil	Compactregler Modbus, dynamischer Transmitter, Modbus RTU, BACnet MS/TP
Betriebsart	V variabler Betrieb

200 - 800 m³/h

Varianten

Compactregler BM0, Typ LMV-D3-M/B TR, 5 Nm

- ① VAV-Compact
- ② Ausrastung Getriebe
- 3 Schlauchanschlüsse Differenzdrucksensor
- ④ Servicebuchse
- ⑤ Achsenklemmvorrichtung
- ⑤ Drehwinkelbegrenzer
- ⑦ Kontrollleuchten/Adressierungstaste
- Anschlussleitung

Compactregler BM0, Typ NMV-D3-M/B TR, 10 Nm

- ① VAV-Compact
- ② Ausrastung Getriebe
- 3 Schlauchanschlüsse Differenzdrucksensor
- ④ Servicebuchse
- ⑤ Achsenklemmvorrichtung
- ⑤ Drehwinkelbegrenzer
- ⑦ Kontrollleuchten/Adressierungstaste
- Anschlussleitung

Technische Daten

Compactregler für VVS-Regelgeräte

VVS-Regelgeräte	Тур	Artikelnummer
TVR, TZ-Silenzio, TA-Silenzio, TVZ, TVA	LMV-D3-M/B	A0000070458
TVJ, TVT	NMV-D3-M/B	A0000070469
TVM	2x LMV-D3-M/B	A0000070458

Compactregler BM0, LMV-D3-M/B TR

Compactregler BM0, LMV-D3-M/B TR	
Messprinzip/Einbaulage	dynamisches Messprinzip, lageunabhängig
Versorgungsspannung (Wechselspannung)	24 V AC, 50/60 Hz
Versorgungsspannung (Gleichspannung)	24 V DC
Funktionsbereich	AC 19,2 – 28,8 V/DC 21,6 – 28,8 V
Anschlussleistung (Wechselspannung)	max. 4 VA (max. 8 A @ 5 ms)
Anschlussleistung (Gleichspannung)	max. 2 W
Drehmoment	5 Nm
Busanschluss	Modbus RTU**, BACnet MS/TP, MP-Bus
	Baudrate: 9600, 19200, 38400 **, 76800, 115200; Adresse: 1 **,2,3 – 247;
einstellbare Kommunikationsparameter Modbus RTU	Parity: 1-8-N-2** , 1-8-N-1, 1-8-E-1, 1-8-O-1;
	Anzahl der Knoten: max. 32 (ohne Repeater); Abschlusswiderstand: 120 Ω;
einstellbare Kommunikationsparameter BACnet MS/TP	Baudrate: 9600, 19200, 38400 **, 76800, 115200; Adresse: 0, 1 **,2,3 – 127; Anzahl der Knoten: max. 32, (ohne Repeater); Abschlusswiderstand: 120 Ω;
Adressierung	bauseits erforderlich: z. B. Einstellgerät ZTH-EU
Eingang Sollwertsignal (analog optional)	0 – 10 V DC
Ausgang Istwertsignal (analog optional)	2 – 10 V DC
Anschlüsse	Kabel, 6 × 0,75 mm², vorkonfektioniert
Schutzklasse	III (Schutzkleinspannung)
Schutzgrad	IP 54
EG-Konformität	EMV nach 2014/30/EU
Gewicht	0,5 kg

^{**}Werkseinstellung

Compactregler BM0, NMV-D3-M/B TR

Compactregler BM0, NMV-D3-M/B TR

Compactregler BM0, NMV-D3-M/B TR	
Messprinzip/Einbaulage	dynamisches Messprinzip, lageunabhängig
Versorgungsspannung (Wechselspannung)	24 V AC, 50/60 Hz
Versorgungsspannung (Gleichspannung)	24 V DC
Funktionsbereich	AC 19,2 – 28,8 V/DC 21,6 – 28,8 V
Anschlussleistung (Wechselspannung)	max. 5 VA (max. 8 A @ 5 ms)
Anschlussleistung (Gleichspannung)	max. 3 W
Drehmoment	10 Nm
Busanschluss	Modbus RTU**, BACnet MS/TP, MP-Bus
	Baudrate: 9600, 19200, 38400 **, 76800, 115200; Adresse: 1 **,2,3 – 247;
einstellbare Kommunikationsparameter Modbus RTU	Parity: 1-8-N-2** , 1-8-N-1, 1-8-E-1, 1-8-O-1;
	Anzahl der Knoten: max. 32 (ohne Repeater);
	Abschlusswiderstand: 120 Ω;
einstellbare Kommunikationsparameter BACnet MS/TP	Baudrate: 9600, 19200, 38400 **, 76800, 115200; Adresse: 0, 1 **,2,3 – 127; Anzahl der Knoten: max. 32, (ohne Repeater); Abschlusswiderstand: 120 Ω;
Adressierung	bauseits erforderlich; z. B. Einstellgerät
Eingang Sollwertsignal (analog optional)	0 – 10 V DC
Ausgang Istwertsignal (analog optional)	2 – 10 V DC
Anschlüsse	Kabel, 6 × 0,75 mm², vorkonfektioniert
Schutzklasse	III (Schutzkleinspannung)
Schutzgrad	IP 54
EG-Konformität	EMV nach 2014/30/EU
Gewicht	0,7 kg

^{**}Werkseinstellung

	Register-	stelle Modbus RTU				
Nummer	Adresse	Beschreibung	Reichweite Aufzählung	Einheit	Skalierung	Zugriff
1	0	Sollwert Sollwert zwischen q _{vmin} und q _{vmax}	0 – 10000 Werkseinstellung: 0	%	0.01	[R/W]
2	1	Zwangssteuerung Überschreibt den Sollwert mit einer Zwangssteuerung	0: keine 1: AUF 2: ZU 3: q _{vmin} 4: q _{vmid} 5: q _{vmax} Werkseinstellung: keine (0)	-	-	[R / W]
3	2	Kommandoauslösung – Auslösen von Funktionen für den Service und für Testzwecke. Reset setzt den Regler zurück und löscht internen Fehlerspeicher wie z. B. Register 105.	0: keine 1: Adaptieren 2: Test 3: Synchronisation 4: Reset Werkseinstellung: keine (0)	-	-	[R / W]
1	3	Antriebstyp	0: Antrieb nicht angeschlossen/ nicht bekannt 1: Stellantrieb Luft/Wasser mit/ ohne Sicherheitsfunktion 2: Volumenstromregler VAV/ EPIV 3: Brandschutzklappe 4: Energy Valve 5: 6way EPIV	-	-	[R]
5	4	Aktuelle Klappenposition (%)	0 – 10000	%	0.01	[R]
3	5	Klappenwinkel (°)	0 – max.	0	1	[R]
7	6	Relativer Volumenstrom bezogen auf q _{vnom}	0 – 10000	%	0.01	[R]
8	7	Absoluter Volumenstrom bezogen auf q _{vnom}	$0-q_{vnom}$	m³/h	1	[R]
9	8	Sensorwert in mV	0 – 65353	mV	1	[R]
10	9	-	-	-	-	[-]
11	10	Absoluter Volumenstrom in gewählter Volumenstromeinheit gem. Register 15 (Lowword)	-	UnitSel	0.0001	[R]
12	11	Absoluter Volumenstrom in gewählter Volumenstromeinheit gem. Register 15 (Highword)	-	UnitSel	0.0001	[R]
13	12	Analoger Sollwert (%). Zeigt den Sollwert in % bei analoger Ansteuerung an.	0 – 10000	%	0.01	[R]
00	99	Bus Abschlusswiderstand. Gibt Auskunft ob der Abschlusswiderstand (120 Ω) aktiv oder deaktiv ist.	0: deaktiv 1: aktiv Werkseinstellung: deaktiv (0)	-	-	[R/W]
101	100	Seriennummer Teil 1	-	-	-	[R]
102	101	Seriennummer Teil 2	-	-	-	[R]
103	102	Seriennummer Teil 3	-	-	-	[R]
104	103	Firmeware Version. Beispiel: 302, Version 3.02	-	-	-	[R]
105	104	Fehlfunktionen und Service Information	Bit1: mechanischer Stellweg überschritten	-	-	[R]

Nummer	Register- Adresse	Beschreibung	Reichweite Aufzählung	Einheit	Skalierung	Zugriff
			Bit2: Antrieb kann nicht bewegt werden (z. B. mech. Überlast) Bit8: interne Aktivität (z. B. Testlauf, Adaption) Bit9: Getriebeausrastung aktiv Bit10: Busüberwachung ausgelöst			
106	105	Einstellung Arbeitsbereich q_{vmin} Bedingungen $q_{vmin} < q_{vmax}$ Vmax im Bereich 0 – 100 % q_{vnom}	0 – q _{vmax} Standard: 0	%	0.001	[R/W]
107	106	Einstellung Arbeitsbereich q_{vmax} Bedingungen $q_{vmax} < q_{vmin}$ Vmax im Bereich 20 – 100 % q_{vnom}	q _{vmin} – 10000 Standard: 10000	%	0.01	[R / W]
108	107	Sensor Art	0: keine 1: Aktiver Sensor (im Hybrid Betrieb) 2: - 3: - 4: Schaltkontakt Werkseinstellung: keine (0)	-	-	[R / W]
109	108	Busausfallüberwachung	0: Letzter Sollwert 1: Schnelles Schließen – ZU 2: Schnelles Öffnen – AUF 3: Position Mitte Werkseinstellung: letzter Sollwert (0)	-	-	[R / W]
110	109	Zeit bis zur Auslösung der Busausfallüberwachung	0 – 3600 Sekunden Werkseinstellung: 0 (Busausfallüberwachung deaktiviert)	S	1	[R/W]
111	110	Nennvolumenstrom [m³/h]	-	m³/h	1	[R]
12	111	-	-	-	-	[-]
113	112	Nennvolumenstrom in gewählter Volumenstromeinheit gem. Reg 118 (LowWord)	-	UnitSel	0.001	[R]
114	113	Nennvolumenstrom in gewählter Volumenstromeinheit gem. Reg 118 (HighWord)	-	UnitSel	0.001	[R]
115	114	-	-	-	-	[-]
116	115	-	-	-	-	[-]
117	116	Control Mode	Positionsregelung (Open Loop) Volumenstromregelung	-	-	[R / W]
118	117	Auswahl der Einheit	0: m³/s 1: m³/h 2: l/s 3: l/min 4: l/h 5: gpm 6: cfm Standard m³/h (1)	-	-	[R / W]
119	118	Sollwertvorgabe	0: Analog (0 – 10 V, 2 – 10 V) 1: Bus (Modbus, BACnet, MP- Bus) Werkseinstellung: Bus (1)	-	-	[R / W]

Objekt Name	Objekt Typ	Beschreibung	Werte	COV Inkrement	Zugriff
Device	Device [Inst.Nr]		0 – 4194302 Default: 1	_	W
RelPos	AI[1]	Klappenposition in % Overridden = 1 (Getriebeausrastung gedrückt)	0 – 100	0.01 – 100 Standard: 1	R
AbsPos	AI[2]	Absolute Position in ° Overridden = 1 (Getriebeausrastung gedrückt)	0 – max. Drehwinkel	0.01 – 65353 Werkseinstellung: 1	R
SpAnalog	AI[6]	Analoger Sollwert in % Zeigt den analogen Sollwert in % an, wenn Sollwertvorgabe in (SpSource[122]) ist Analog (1) Wenn Sollwertvorgabe (SpSource[122]) Bus (2) = dann Out_Of_Service ist TRUE gesetzt	0 – 100	0.01 – 100 Standard: 1	R
RelFlow	AI[10]	Relativer Volumenstrom in %	0 – 100	0.01 – 100 Standard: 1	R
AbsFlow_UnitSel	AI[19]	Absoluter Volumenstrom gewählter Einheit gem. [121]	$0 - V_{\text{nom}}$	0.01 – 1000 Standard: 1	R
Sens1Analog	AI[20]	Sensor 1 ist ein analoger Wert in mV Analogwert in mV, wenn Sensor1Type MV[220] aktiv ist. Wenn (Sensor1Typ MV[220]) = 2 (nicht aktiv) oder (SpSource MV [122]) = 2 (Bus), wird Out_of_Service = TRUE	-	0.01 – 1000 Standard: 1	R
SpRel	AO[1]	Relativer Sollwert in % Sollwert zwischen q _{vmin} AV[97] und q _{vmax} [98] (Nur bei Bus Ansteuerung) Wenn SpSource (MV[122]) = 1 (Analog), dann Out_of_Service = TRUE	0 – 100 Werkseinstellung: 0	0.01 – 100 Werkseinstellung: 1	С
Min.	AV[97]	Minimaler Sollwert in % (q_{vmin}) Bedingung: $q_{vmin} < q_{vmax}$ q_{vmin} im Bereich 0 – 100 & q_{vnom}	0 - V _{max} Werkseinstellung: 0	0.01 – 100 Werkseinstellung: 1	W
Max.	AV[98]	Minimaler Sollwert in % (q_{vmax}) Bedingung: $q_{vmax} > q_{vmin}$ q_{vmax} im Bereich 20 – 100 % von q_{vnom}	V _{min} – 100 Standard: 100	0.01 – 100 Standard: 1	W
Vnom_UnitSel	AV[104]	Aktueller Volumenstrom gem. gewählter Volumenstromeinheit (UnitSelFlow MV[121])	-	0.01 – 100 Standard: 1	R
Bus Watchdog	AV[130]	Zeit bis zur Auslösung der Busausfallüberwachung in s Wenn Present_Value ≠ 0, dann wird Schreibzugriff auf Present_Value von AO[1] und MO[1] überwacht. Mit Schreiben in Present_Value AO[1] MO[1] wird der Timer zurückgesetzt. Im Hybrid-Betrieb werden nur Schreibzugriffe auf MO[1] überwacht.	0 – 3600 s Werkseinstellung: 0 (Busausfallüberwachung deaktiviert)	0.01 – 1000 Standard: 1	W
Sens1Switch	BI[20]	Zustand des Schalters am Sensoreingang.	Inactive_Text: Schalter nicht aktiv	-	R

Objekt Name	Objekt Typ	Beschreibung	Werte	COV Inkrement	Zugriff
		Wenn SenType MV [122] = 5 (Schalter) Wenn SensType MV [122] ≠ 5 wird Out_of_Service = TRUE	Active_Text: Schalter aktiv		
BusTermination	BI[99]	Abschlusswiderstand Zeigt an, ob der Abschlusswiderstand (120 Ω) über die Service Tools aktiviert wurde.	Inactive_Text: Schalter nicht aktiv Active_Text: Schalter aktiv	-	R
SummaryStatus	BI[101]	Sammelstatus Zusammenfassender Status (MI[106], MI[110])	Inactive_Text: kein Fehler Active_Text: Fehler	-	R
InternalActivity	MI[100]	Status Aktivität	1: keine 2: Test 3: Adaption	-	R
StatusActuator	MI[106]	Status des Antriebes	1: OK 2: Antrieb kann nicht bewegt werden 3: Getriebeausrastung aktiv 4: mechanischer Stellweg überschritten	-	R
StatusDevice	MO[110]	Status des Gerätes Zeigt den generellen Status des Gerätes an	1: OK 2: Busausfallüberwachung aktiviert	-	R
Override	MO[1]	Zwangssteuerung Überschreibt den Sollwert (SpRel AO[1]) mit einem Zwangsbefehl	1: keine 2: AUF 3: ZU 4: q _{vmin} 5: q _{vmid} 6: q _{vmax} Werkseinstellung: keine (1)	-	С
Command	MV[120]	Testfunktionen auslösen	1: keine 2: Adaption 3: Test 4: Zurücksetzen Werkseinstellung: keine (1)	-	W
UnitSelFlow	MV[121]	Auswahl der Einheit Die ausgewählte Einheit wird in Al[19] und AV[104] angezeigt	1: m³/s 2: m³/h 3: l/s	-	W
ControlMode	MV[122]	Sollwertvorgabe	1: Analog (0 – 10 V, 2 – 10 V) 2: Bus (Modbus, BACnet, MP-Bus) Werkseinstellung: Bus (2)	-	W
ControlMode	MV[223]	ControlMode	1: Positionsregelung (OponLoop) 2: Volumenstromregelung	-	W
Sens1Type	MV[220]	Festlegung des Sensortyps für den Analogeingang	1: keine 2: aktiver Sensor (im Hybridbetrieb) 5: Schalter Werkseinstellung: keine (1)	-	W

Produktdetails

Busbetrieb

Werkseitig wird der Regler mit der Betriebsart Modbus-RTU ausgeliefert. Die Betriebsart kann jederzeit durch das Servicetool ZTH-EU auf BACnet, MP-Bus oder Analog umgestellt werden. Für den reibungslosen Datenaustausch im bauseitigen Bus-Netzwerk ist die Einstellung der Kommunikationsparameter und der Teilnehmeradresse für die Busschnittstelle erforderlich. Die Kommunikationsparameter der Bussysteme (Adresse, Baudrate ...) können mit dem ZTH-EU eingestellt werden. Die Schnittstelle bietet standardisierte Bus-Regist/Objekt-Zugriffe auf die verfügbaren Datenpunkte.

Sollwertvorgabe

- In der Betriebsart Modbus RTU (Werkseinstellung) erfolgt die Sollwertvorgabe nur durch Vorgabe des Volumenstrom-Sollwerts
 [%] im Modbus-Register 0
- Der übergebene Prozentwert bezieht sich auf den durch q_{vmin} q_{vmax} festgelegten Volumenstrombereich
- Volumenstrombereich q_{vmin} q_{vmax} werkseitig entsprechend Bestellschlüsselangaben voreingestellt
- Nachträgliche Anpassung von q_{vmin} bzw. q_{vmax} über Servicetool ZTH-EU oder über Modbus/BACnet-Schnittstelle möglich

Istwert als Feedback für Überwachung oder Folgeregelung

- Sowohl im Modbus als auch im BACnet sind die Istwerte in m³/h (Werkseinstellung) ablesbar
 - Andere Einheiten wie m³/s, l/s, l/min, l/h, gpm, cfm möglich
- Neben dem Volumenstrom-Istwert k\u00f6nnen weitere Informationen \u00fcber andere Modbus-Register/BACnet-Objekte ausgelesen werden
 - Übersicht der Register/Objekte in den Kommunikationstabellen
- Zu Diagnosezwecken kann im Busbetrieb der Volumenstrom-Istwert an der Leitungsader 5 abgegriffen werden Der Volumenstrombereich 0 – q_{vNenn} entspricht dabei immer dem Signalspannungsbereich von (0)2 – 10 V DC

Zwangssteuerung

Für besondere Betriebssituationen kann der Volumenstromregler in einen speziellen Betriebszustand (Zwangssteuerung) gebracht werden. Möglich sind: Regelung q_{vmin}, Regelung q_{vmax}, Regelklappe in Offenstellung (OFFEN) oder Regelklappe geschlossen (ZU).

Zwangssteuerung über den Bus

Vorgaben erfolgen über das Modbus-Register 1 bzw. über BACnet Object Type MO[1].

Zwangssteuerung durch Busausfallüberwachung (Modbus)

Bei Ausfall der Modbus-Kommunikation für einen festgelegten Zeitraum kann ein vordefinierter Betriebszustand q_{vmin} , q_{vmax} , OFFEN oder ZU aktiviert werden.

- Die Festlegung der bei Busausfall zu aktivierenden Zwangssteuerung erfolgt über Modbus-Register 108
- Die Festlegung, nach welcher Busausfallzeit die Zwangssteuerung aktiviert, erfolgt über Modbus-Register 109
- Jegliche Modbus-Kommunikation setzt den Timeout der Busausfallüberwachung zurück

Zwangssteuerung durch Busausfallüberwachung (BACnet)

Bei Ausfall der BACnet-Kommunikation für einen festgelegten Zeitraum kann ein vordefinierter Betriebszustand aktiviert werden.

- Die Festlegung des bei Busausfall zu aktivierenden Sollwerts erfolgt über den Reliquish Default von SpRel (Object AO1)
- Busausfallzeit wird definiert über BusWatchdog (Objekttyp AV [130])
- Kommunikation auf die Datenpunkte SpRel (Object AO[1] und Override (Object MO[1])

Zwangssteuerungen für Diagnosezwecke

Aktivierung über Bussytem, externe/bauseitige Schaltkontakte, ZTH EU oder PC-Software.

Priorisierung verschiedener Vorgabemöglichkeiten

Vorgaben für Zwangssteuerungen über Analog sind gegenüber Modbus/BACnet-Vorgaben priorisiert.

- Höchste Priorität: Vorgabe über eine analoge Zwangssteuerung
- Mittlere Priorität: Vorgaben über den Servicestecker (Einstellgerät, PC-Software) zu Testzwecken
- Niedrigste Priorität: Vorgabe über Modbus/BACnet/MP-BUS

Analogbetrieb bzw. Hybridbetrieb 0 - 10 V DC bzw. 2 - 10 V DC

Werkseitig wird der Regler mit der Betriebsart Modbus-RTU ausgeliefert. Für den Analogbetrieb bzw. Hybridbetrieb ist eine bauseitige Umstellung mit dem ZTH-EU oder mit PC-Tool notwendig. Die Analogschnittstelle kann für den Signalspannungsbereich 0 – 10 V DC oder 2 – 10 V DC mittels PC-Tool eingestellt werden. Die Zuordnung von Volumenstrom-Sollwert bzw. -Istwert zu Spannungssignalen ist in den Kennliniendarstellungen abgebildet. Im Hybridbetrieb ist eine analoge Ansteuerung mit digitaler Rückmeldung gemäß Busschnittstellenliste möglich.

Analoger Hybridbetrieb

- Bei analoger Sollwertvorgabe über Leitungsader 3 und analoger Rückmeldung über Leitungsader 5 ist trotzdem eine Rückmeldung über BACnet MS/TP oder Modbus RTU möglich
- Zwangssteuerungen q_{vmin}, q_{vmax}, Regelklappe in Offenstellung (OFFEN) oder Regelklappe geschlossen (ZU) über Busschnittstelle möglich
- Diverse Betriebsparameter gemäß Busschnittstellenliste über BACnet MS/TP oder Modbus RTU abrufbar

Sollwertvorgabe

Variabler Betrieb

- In der variablen Betriebsart erfolgt die Sollwertvorgabe mit einem Analogsignal an der Leitungsader 3
 - Sollwertvorgaben über das jeweilige Bussystem werden abgewiesen
- Gewählter Signalspannungsbereich 0 10 V DC bzw. 2 10 V DC wird eingestelltem Volumenstrombereich q_{vmin} q_{vmax} zugeordnet
- Volumenstrombereich q_{vmin} q_{vmax} werkseitig entsprechend Bestellschlüsselangaben voreingestellt
- Nachträgliche Anpassung von q_{vmin} bzw. q_{vmax} über Servicetool ZTH-EU oder PC-Tool einstellbar

Festwertbetrieb

- In der Betriebsart Festwertbetrieb ist kein Analogsignal an der Leitungsader 3 erforderlich
- Es wird der durch q_{vmin} eingestellte Volumenstrom-Festwert geregelt
- Volumenstrom $q_{\mbox{\tiny wmin}}$ werkseitig entsprechend Bestellschlüsselangabe voreingestellt
- Nachträgliche Anpassung von q_{vmin} über Servicetool ZTH EU oder PC-Tool möglich

Istwert als Feedback für Überwachung oder Folgeregelung

- An der Leitungsader 5 kann der vom Regler gemessene Istvolumenstrom als Spannungssignal abgegriffen werden
- Gewählter Signalspannungsbereich 0 10 V DC bzw. 2 10 V DC wird auf den Volumenstrombereich 0 q_{wenn} abgebildet
- Im Analogbetrieb besteht parallel die Möglichkeit, Betriebsdaten über die Modbusschnittstelle abzufragen

Zwangssteuerung

Für besondere Betriebssituationen kann der Volumenstromregler in einen speziellen Betriebszustand (Zwangssteuerung) gebracht werden. Möglich sind: Regelung q_{vmin} , Regelung q_{vmax} , Regelklappe in Offenstellung (OFFEN) oder Regelklappe geschlossen (ZU).

Zwangssteuerungen über Signaleingang Y

Durch passende Beschaltung am Signaleingang Y können die Zwangssteuerungen entsprechend den Anschlussbildern durch Beschaltung mit externen Schaltkontakten/Relais aktiviert werden (siehe Verdrahtungsbeispiele). OFFEN und ZU stehen nur bei einer Versorgung des Reglers mit Wechselspannung (AC) zur Verfügung.

Zwangssteuerung ZU über Führungssignal am Signaleingang Y

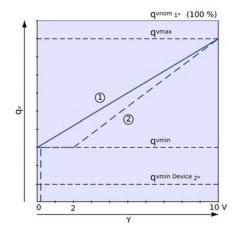
- Bei Signalspannungsbereich 0 10 V DC: ZU wird aktiviert, wenn q_{vmin} = 0 eingestellt und Führungssignal Y < 0>
- Bei Signalspannungsbereich 2 10 V DC: ZU wird aktiviert, wenn Führungssignal Y < 2,4 V DC ist

Zwangssteuerungen im Analogbetrieb über Modbusschnittstelle

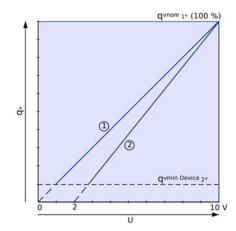
Ist im Analogbetrieb die Modbusschnittstelle zusätzlich angeschlossen, kann über Modbus-Register 1 ebenfalls eine Zwangssteuerung vorgegeben werden.

Zwangssteuerung für Diagnosezwecke

Aktivierung über Servicetools ZTH-EU oder PC-Tool


Priorisierung verschiedener Vorgabemöglichkeiten

- Vorgaben für Zwangssteuerungen über Analog sind gegenüber Modbus/BACnet-Vorgaben priorisiert
- Höchste Priorität: Vorgabe über eine analoge Zwangssteuerung
- Mittlere Priorität: Vorgaben über den Servicestecker (Einstellgerät, PC-Software) zu Testzwecken
- Niedrigste Priorität: Vorgabe über Modbus/BACnet/MP-BUS



Kennlinie des Sollwertsignals

- ① Signalspannungsbereich 0 10 V
- ② Signalspannungsbereich 2 10 V
- $1^* = q_{vnenn}$ Nennvolumenstrom
- $2^* = q_{vmin Gerät}$ minimal regelbarer Volumenstrom

Kennlinie des Istwertsignals

- ① Signalspannungsbereich 0 10 V
- ② Signalspannungsbereich 2 10 V
- $1^* = q_{vnenn}$ Nennvolumenstrom
- $2^* = q_{\text{vmin Gerät}}$ minimal regelbarer Volumenstrom

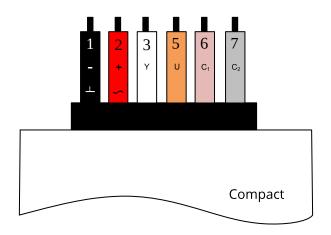
Berechnung Volumenstromsollwert bei 0 – 10 V

$$q_{vset} = \frac{Y}{10 V} \times (q_{vmax} - q_{vmin}) + q_{vmin}$$

Berechnung Volumenstromistwert bei 0 - 10 V

$$q_{vact} = \frac{U}{10 V} \times q_{vnom}$$

Berechnung Volumenstromsollwert bei 2 - 10 V


$$q_{vset} = \frac{Y - 2V}{(10V - 2V)} \times (q_{vmax} - q_{vmin}) + q_{vmin}$$

Berechnung Volumenstromistwert bei 2 – 10 V

$$q_{vact} = \frac{U - 2}{10 V - 2 V} \times q_{vnom}$$

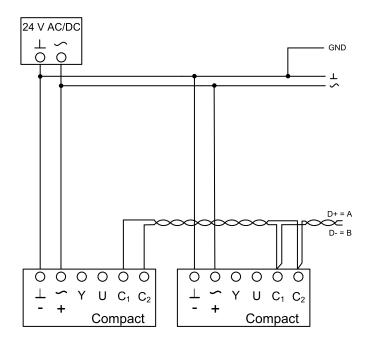
Anschlussbelegung beim BM0

 $_{\perp}$, - = Masse, Null

~, + = Versorgungsspannung 24 V AC/DC

Y = Analogeingang 0 - 10 V DC oder 2 - 10 V DC und

Zwangssteuerung


U = Istwertsignal 2 – 10 V DC

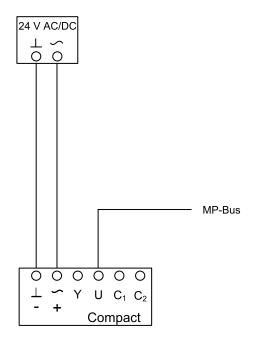
C1 = D- = A = Busbetrieb

C2 = D+ = B = Busbetrieb

Ansteuerung über BACnet MS/TP oder Modbus RTU

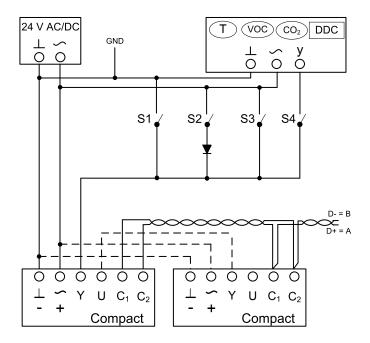
⊥, - = Masse, Null

~, + = Versorgungsspannung 24 V AC/DC


C1 = D- = A = BACnet MS/TP/Modbus RTU

C2 = D+ = B = BACnet MS/TP/Modbus RTU

Ansteuerung über MP-Bus


 $_{\perp}$, - = Masse, Null

~, + = Versorgungsspannung 24 V AC/DC

U = MP-Bus

Ansteuerung Analog 0 (2) – 10 V und Zwangssteuerung mit Busrückmeldung (Hybridbetrieb)

⊥, - = Masse, Null

~, + = Versorgungsspannung 24 V AC/DC

Y = Analogeingang 0 - 10 V DC oder 2 - 10 V DC und

Zwangssteuerung

U = Istwertsignal 2 – 10 V DC

C1 = D- = A = BACnet MS/TP/Modbus RTU

C2 = D+ = B = BACnet MS/TP/Modbus RTU

S1 = Regelklappe geschlossen ZU

S2 = Regelklappe geöffnet AUF (nur bei Versorgungspannung

24 V AC)

S3 = maximaler Volumenstrom V_{max}

S4 = analoger Sollwert (Raumtemperaturreglung)

T, VOC, CO2, DDC = Sollwertvorgabe

Bei Kombination mehrerer Zwangsteuerungen die Schalter gegeneinander verriegeln, um Kurzschlüsse zu vermeiden. Diode z. B. 1N 4007.

Legende

q_{vNenn} [m³/h]; [l/s]

Nennvolumenstrom (100 %): Wert ist abhängig von Geräteserie, Nenngröße und Regelkomponente (Anbauteil). Werte im Internet und in der Produktbroschüre publiziert und im Auslegungsprogramm Easy Product Finder hinterlegt. Referenzwert zur Berechnung von Prozentwerten (z. B. q_{vmax}). Obere Grenze des Einstellbereichs und maximal möglicher Volumenstromsollwert des VVS-Regelgerätes.

$\mathbf{q}_{\text{vmin Gerät}}$ [m³/h]; [l/s]

Technisch minimaler Volumenstrom: Wert ist abhängig von Geräteserie, Nenngröße und Regelkomponente (Anbauteil). Werte im Auslegungsprogramm Easy Product Finder hinterlegt. Untere Grenze des Einstellbereichs und minimaler regelbarer Volumenstromsollwert des VVS-Regelgerätes. Sollwerte unterhalb q_{vmin Gerät} (wenn q_{vmin} gleich 0 eingestellt) führen je nach Regler zu instabiler Regelung oder Absperrung.

q_{vmax} [m³/h]; [l/s]

Kundenseitig einstellbare, obere Grenze des Arbeitsbereichs des VVS-Regelgerätes: q_{vmax} kann nur kleiner oder gleich q_{vNenn} eingestellt werden. Bei analoger Ansteuerung von Volumenstromreglern (typischerweise verwendet) wird dem maximalen Wert des Sollwertsignals (10 V) der eingestellte maximale Wert (q_{vmax}) zugeordnet (siehe Kennlinie).

\mathbf{q}_{vmin} [m³/h]; [l/s]

Kundenseitig einstellbare, untere Grenze des Arbeitsbereichs des VVS-Regelgerätes: q_{vmin} sollte nur kleiner oder gleich q_{vmax} eingestellt werden. q_{vmin} nicht kleiner als q_{vmin Gerät} einstellen, Regelung sonst instabil, oder die Regelklappe schließt. q_{vmin} gleich 0 ist ein gültiger Wert. Bei analoger Ansteuerung von Volumenstromreglern (typischerweise verwendet), wird dem

minimalen Wert des Sollwertsignals (0 oder 2 V) der eingestellte minimale Wert (q_{vmin}) zugeordnet (siehe Kennlinie).

q_v [m³/h]; [l/s] Volumenstrom

Volumenstromregler

Bestehend aus einem Grundgerät und einer angebauten Regelkomponente.

Grundgerät

Gerät zur Regelung eines Volumenstroms ohne angebaute Regelkomponente. Wesentliche Bestandteile sind das Gehäuse mit Sensorelement(en) zur Erfassung des Wirkdrucks und die Stellklappe zur Drosselung des Volumenstroms. Das Grundgerät wird auch als VVS-Regelgerät bezeichnet. Wichtige Unterscheidungsmerkmale: Geometrie bzw. Geräteform, Material- und Anschlussvarianten, akustische Eigenschaften (z. B. Dämmschalenoption oder integrierte Schalldämpfer), Volumenstrombereich.

Regelkomponente

An das Grundgerät montierte elektronische Einheit(en) zur Regelung des Volumenstroms oder des Kanaldrucks oder des Raumdrucks durch Anpassung der Stellklappenposition. Die elektronische Einheit besteht im Wesentlichen aus einem Regler mit Wirkdrucktransmitter (integriert oder extern) sowie einem integrierten Stellantrieb (Easy- und Compactregler) oder separaten Stellantrieb (Universal oder LABCONTROL-Regler). Wichtige Unterscheidungsmerkmale: Transmitter: dynamischer Transmitter für saubere Luft bzw. statischer Transmitter für verschmutzte Luft. Stellantrieb: Standardantrieb langsamlaufend, Federrücklaufantrieb für Sicherheitsstellung oder schnelllaufender Antrieb. Schnittstellentechnik: Analogschnittstelle oder digitale Busschnittstelle zur Aufschaltung und zum Abgriff von Signalen und Informationen.

