
Deckendiffusoren

- Typ DD / DDRQ / DDQ
- rund und quadratisch

TROX HESCO Schweiz AG Walderstrasse 125 Postfach 455 CH - 8630 Rüti ZH Tel. +41 (0)55 250 71 11 Fax +41 (0)55 250 73 10 www.troxhesco.ch info@troxhesco.ch

Inhalt · Anwendung · Ausführungen · Abmessungen

Inhalt

Anwendung · Ausführungen · Abmessungen	2
Ausführungen · Abmessungen	3
Ausführungen · Abmessungen · Zubehör	4
Einbau	5
Technische Daten	6–15
Restellinformationen	16

Anwendung

Die quadratischen und runden Deckendiffusoren sind für Zuluft oder Abluft in Decken geeignet. Die Ausführungen flach (Typ F) und konisch (Typ K) unterscheiden sich vor allem im freien Querschnitt. Sie blasen flach der Decke entlang und können deshalb auch für niedrige Räume verwendet werden. Die quadratischen Deckendiffusoren lassen sich besonders harmonisch in Plattendecken einbauen.

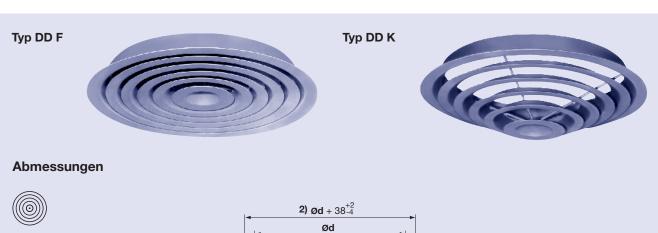
Deckendiffusoren sind geeignet für:

- Anlagen mit konstantem Volumenstrom
- Anlagen mit variablem Volumenstrom (VAV)

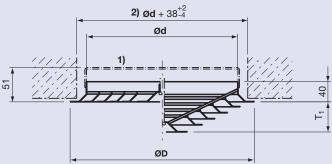
Ausführung

Rund mit rundem Aussenrahmen Typ DD **Material und Farbe**

Stahl, pulverbeschichtet nach RAL 9010, matt, 25% Glanzheitsgrad


Befestigungsmöglichkeit

mittels Zentralschraube


Drosselelement

Schieberdrossel

Aluminium roh (Verstellmöglichkeit verdeckt angebracht)

- 1) Schieberdrossel
- Aussparung

Тур	NW	Ø D [mm]	Ød (aussen) [mm]	T1 [mm]
	150	216	152	24
	200	266	202	26
	250	316	252	48
DD	300	366	302	60
	400	466	402	84
	500	566	502	108

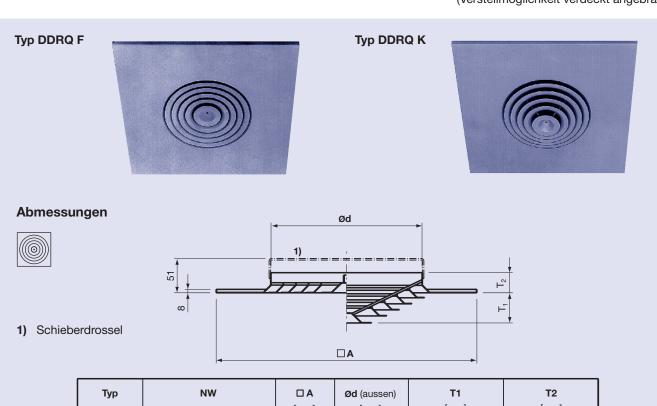
Ausführungen · Abmessungen

Ausführung

Rund mit quadratischer Deckenplatte Typ DDRQ

Material und Farbe

Stahl, pulverbeschichtet nach RAL 9010, matt, 25% Glanzheitsgrad


Befestigungsmöglichkeit

mittels Zentralschraube oder eingelegt in die Deckenkonstruktion.

Drosselelement

Schieberdrossel: Aluminium roh

(Verstellmöglichkeit verdeckt angebracht)

Тур	NW		NW		T1 [mm]	T2 [mm]
		150		152	24	40
		200		202	26	40
	598×	250	598	252	48	40
DDRQ	623×	300	000	302	60	24
		400	623	402	84	24
		500		502	108	24

Ausführung

Quadratisch Typ DDQ

Material und Farbe

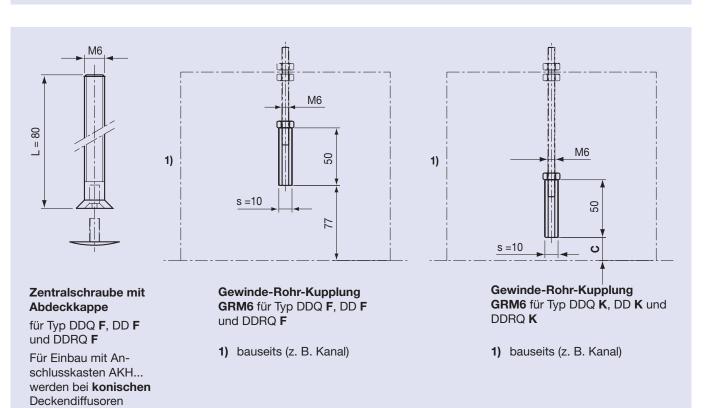
Stahl, pulverbeschichtet nach RAL 9010, matt, 25% Glanzheitsgrad

Befestigungsmöglichkeit

mittels Zentralschraube

Drosselelement

Schieberdrossel Gegenlaufklappe Aluminium roh


Rahmen: verzinktes Stahlblech Lamellen: Aluminium roh (Verstellmöglichkeit von unten über verdeckt

angeordnetem Hebel)

Typ DDQ K

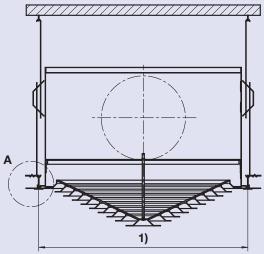
Ausführungen · Abmessungen · Zubehör

Ansicht von unten **Abmessungen** □ **a** + 28 \square A □ a **∀** Ξ NW T1 Тур $\Box \mathbf{A}$ □ a (aussen) [mm] [mm] [mm] 300 202 300×200 49 400×300 400 302 71 500×400 500 402 93 600×500 600 502 115 DDQ 625×500 625 502 115

Typ DD / DDRQ	Ød	[mm]	152	202	252	302	402	502
Iyp DD / DDRQ	С	[mm]	80	50	37	25	0	-22

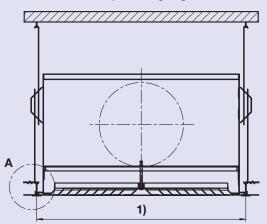
Typ DDQ	□a	[mm]	202	302	402	502
тур оод	С	[mm]	32	10	-12	-34

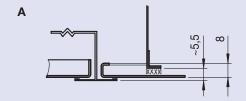
längere Zentralschrau-

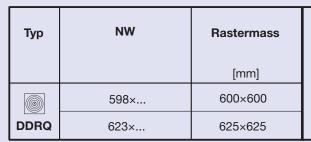

ben benötigt.

Rund mit quadratischer Deckenplatte Typ DDRQ mit Anschlusskasten

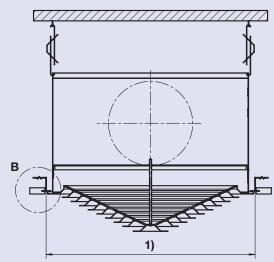
Typ DDRQ K

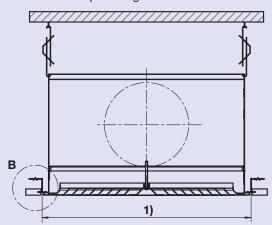

Von oben in Deckenprofil eingelegt.


1) Rastermass


Typ DDRQ F

Von oben in Deckenprofil eingelegt.


1) Rastermass


Typ DDRQ K

Von unten an Deckenprofil angedrückt.

Typ DDRQ F

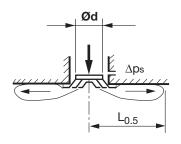
Von unten an Deckenprofil angedrückt.


Anschlusskasten

Details siehe Prospekt L-04-1-31d (TROX HESCO) oder 2/16.4/... (TROX)

Technische Dokumentation

- Unsere Angaben basieren auf einer max. Temperaturdifferenz (Δt) zwischen Raumlufttemperatur und Zulufttemperatur von -10 K. Die dabei zu erwartenden Raumluftgeschwindigkeiten liegen im Behaglichkeitsbereich. Säulen, die innerhalb des Luftstrahles stehen, müssen durch Abdecken des entsprechenden Sektors im Diffusor geschützt werden.
- 2. Bei Anlagen mit Warmlufteinblasung empfehlen wir, die Deckendiffusoren nur bis zu einer Raumhöhe R_H von max. 3.2 m einzusetzen.


	m²	Luftdurchlassnennfläche
\	m ²	effektive freie Fläche
A _{eff}		
4 0	m²	Bezugsnennfläche
Ød Sp	mm	Durchlassgrösse beim runden Deckendiffusor
ØD _	mm	Sichtbarer Aussendurchmesser
∃a	mm	Durchlassgrösse beim quadratischen Deckendiffusor
JA	mm	Sichtbares Aussenmass
)	mm	Strahlbreite beim quadratischen Deckendiffusor
)	m	Distanz zwischen zwei Deckendiffusoren
:	Hz	Oktav-Mittenfrequenzen
10K	m	Strahldicke (ab Decke) beim isothermen Luftstrahl
110K	m	Strahldicke (ab Decke) beim kalten Luftstrahl, Δt = 10 K(-)
-0.5	m	Entfernung vom Luftstrahl (bei Endgeschwindigkeit 0,5 m/s in der Strahlachse)
-W	dB(A)	Schallleistungspegel
-W _{A0}	dB(A)	Schallleistungspegel bezogen auf Bezugsnennfläche A ₀
۱۵ ۵L _W	dB	Korrektur 'Schalleistungspegel' in Abhängigkeit der Durchlassgrösse
Δp _S	Pa	statischer Druckverlust
ØF	-	Verhältnis beim runden, flachen Deckendiffusor = ca. 0.33 = ca. 33%
ØK	-	Verhältnis beim runden, konischen Deckendiffusor = ca. 073 = ca. 73%
ΦF	-	Verhältnis beim quadratischen, flachen Deckendiffusor = ca. 0.32 = ca. 32%
.¤K	-	Verhältnis beim quadratischen, konischen Deckendiffusor = ca. 0.575 = ca. 57.5%
Зн	m	Raumhöhe
/ _{eff}	m/s	effektive Ausblasgeschwindigkeit
·/	m³/h	Luftvolumenstrom

Auswahldiagramm - Zuluft

Typ DDRQ F 0 Typ DDRQ F 5

eff. freier Querschnitt: ~33%

Raumhöhe RH [m]	Min. Distanz D in Abhängigkeit von Raumhöhe R⊣ [m]
2.25 - 2.50	1.5 2 3 4 5 6 7 8 910 15
2.51 - 2.80	1.5 2 3 4 5 6 7 8 9 10 15
2.81 - 3.20	1.5 2 3 4 5 6 7 8 9 10 15
3.21 - 3.75	1.5 2 3 4 5 6 7 8 9 10 15
3.76 - 4.50	1 1.5 2 3 4 5 6 7 8 9 10 15

Entfernung bei Endgeschwindigkeit 0.5 m/s = $L_{0.5}$ 0.5 [m] Statischer Druck ∆ps (Typ 0) [Pa] 200 202 252 302 402 502 Ausblasgeschwindigkeit veff 50 W [m/s] Schallleistungspegel L_W Typ F 0 1) Ød = 302 mm 1983 \$88 [dB(A)] Schallleistungspegel L_w Typ F 5 1) 100%, Ød = 302 mm [dB(A)] Schallleistungspegel L_w Typ F 5 ¹⁾ 50%, Ød = 302 mm [dB(A)]

Korrekturen

Korrektur 'Druckabfall'

mit F 5 - 100 % offen	∆p _s	=	1.32	×	Δp_{s0}	[Pa]
mit F 5 - 50 % offen	∆p _s	=	2.45	×	Δp_{s0}	[Pa]

 Δp_{s0} = statische Druckdifferenz ohne Drosselelement

Korrektur 'Schallleistung' in Abhängigkeit der Durchlassgrösse

Ød	152	202	252	302	402	502	[mm]
ΔLw	-3	-2	-1	0	+1	+2	[dB]

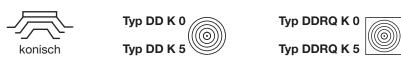
Beispiel

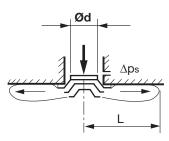
gegeben **Typ** = DD F 5 (mit Schieberdrossel 100% offen)

= 2.4 m $= 250 \text{ m}^3/\text{h}$

 $\emptyset d = 302 \text{ mm}$ Lösung

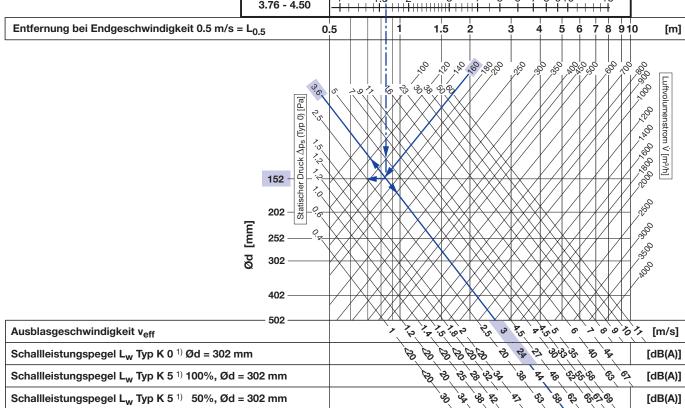
 $\mathbf{v}_{\mathbf{eff}} = 3.0 \, \text{m/s}$


 $\Delta \mathbf{p_s} = 13 \times 1.32 = 17 \text{ Pa}$


 $\mathbf{L_w} = 39 \, \mathrm{dB(A)}$

 $L_{0.5} = 1.1 \text{ m}$

¹⁾ Angaben gültig für: Zuluft gerade angeströmt, flache Doppeldecke; F 0 = flach ohne Drosselelement; F 5 = flach mit Schieberdrossel


Auswahldiagramm - Zuluft

eff. freier Querschnitt: ~73%

Raumhöhe R _H [m]	Min. Distanz D in Abhängigkeit von Raumhöhe R _H [m]
2.25 - 2.50	1.5 2 3 4 5 6 7 8 9 10 15
2.51 - 2.80	1.5 2 3 4 5 6 7 8 910 15
2.81 - 3.20	1.5 2 3 4 5 6 7 8 9 10 15
3.21 - 3.75	1.5 2 3 4 5 6 7 8 9 10 15
3.76 - 4.50	1 1.\$ 2 3 4 5 6 7 8 910 15

¹⁾ Angaben gültig für: Zuluft gerade angeströmt, flache Doppeldecke; K 0 = konisch ohne Drosselelement; K 5 = konisch mit Schieberdrossel

Korrekturen

Korrektur 'Druckabfall'

mit K 5 - 100 % offen	∆p _s	=	1.32	×	∆p _{s0}	[Pa]
mit K 5 - 50% offen	Δps	=	2.45	×	Δp_{s0}	[Pa]

 Δp_{s0} = statische Druckdifferenz ohne Drosselelement

Korrektur 'Schallleistung' in Abhängigkeit der Durchlassgrösse

Ød	152	202	252	302	402	502	[mm]
ΔL _W	-3	-2	-1	0	+1	+2	[dB]

Beispiel

gegeben Typ = DD K 0 (mit Schieberdrossel 100% offen)

 $\mathbf{R_H} = 2.3 \, \mathrm{m}$

= 2.2 m

 $= 160 \text{ m}^3/\text{h}$

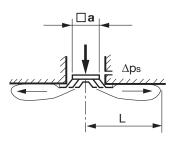
Lösung

Ød = 152 mm

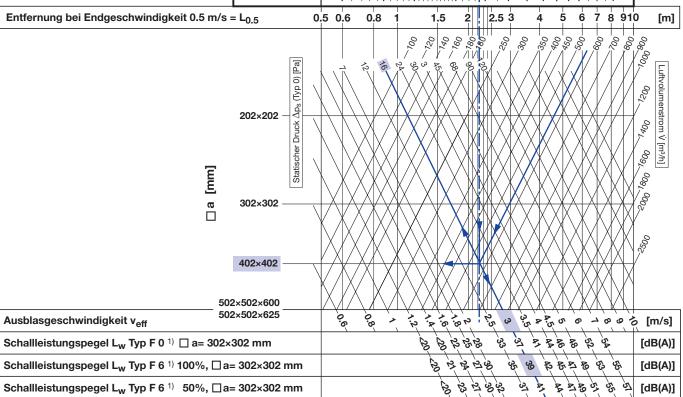
 $v_{eff} = 3.0 \text{ m/s}$

 $\Delta \mathbf{p_s} = 4 \text{ Pa}$ $\mathbf{L_w} = 24 - 3 = 21 \text{ dB(A)}$

 $L_{0.5} = 0.85 \text{ m}$


Auswahldiagramm - Zuluft

Typ DDQ F 0



Typ DDQ F 6

eff. freier Querschnitt: ~32%

Raumhöhe R _H [m]	Min. Distanz D in Abhängigkeit von Raumhöhe R _H [m]
2.25 - 2.50	1.5 2 3 4 5 6 7 8 910 15
2.51 - 2.80	1.5 2 3 4 5 6 7 8 910 15
2.81 - 3.20	1.5 2 3 4 5 6 7 8 9 10 15
3.21 - 3.75	1.5 2 3 4 5 6 7 8 9 10 15
3.76 - 4.50	1 1.5 2 3 4 5 6 7 8 9 10

¹⁾ Angaben gültig für: Zuluft gerade angeströmt, flache Doppeldecke; F 0 = flach ohne Drosselelement; F 6 = flach mit Schieberdrossel

Korrekturen

Korrektur 'Druckabfall'

mit F 6 - 100 % offen	Δp _S	=	1.10	×	∆p _{s0}	[Pa]
mit F 6 - 50% offen	∆p _s	=	1.50	×	Δp_{s0}	[Pa]

 Δp_{s0} = statische Druckdifferenz ohne Drosselelement

Korrektur 'Schallleistung' in Abhängigkeit der Durchlassgrösse

□a	202×202	302×302	402×402	502×502	[mm]
ΔLw	-1	0	+1	+2	[dB]

Beispiel

gegeben

Typ = DDQ F 6 (mit Gegenlaufklappe 100% offen)

 $\mathbf{R_H} = 3.0 \, \mathrm{m}$

 $\mathbf{D}^{\text{T}} = 5.0 \, \text{m}$

 $= 560 \text{ m}^3/\text{h}$

Lösung

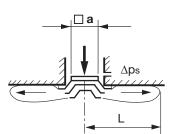
 \Box **a** = 402×402 mm

 $\mathbf{v}_{\mathbf{eff}} = 3.0 \, \text{m/s}$

 $\Delta p_{s} = 16 \times 1.1 = 18 \text{ Pa}$

 $L_{w} = 39 + 1 = 40 \text{ dB(A)}$

 $L_{0.5}$ = 2.2 m


Auswahldiagramm - Zuluft

Typ DDQ K 0

Typ DDQ K 6

eff. freier Querschnitt: ~57.5%

Raumhöhe RH	Min. Distanz D in Abhängigkeit von Raumhöhe R H
[m]	[m]
2.25 - 2.50	1.5 2 3 4 5 6 7 8 910 15
2.51 - 2.80	1.5 2 3 4 5 6 7 8 9 10 15
2.81 - 3.20	1.5 2 3 4 5 6 7 8 910 15
3.21 - 3.75	1.5 2 3 4 5 6 7 8 9 10 15
3.76 - 4.50	1 1.5 2 3 4 5 6 7 8 910 15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

¹⁾ Angaben gültig für: Zuluft gerade angeströmt, flache Doppeldecke; K 0 = konisch ohne Drosselelement; K 6 = konisch mit Schieberdrossel

Korrekturen

Korrektur 'Druckabfall'

mit K 6 - 100 % offen	∆p _s	=	1.15	×	Δp_{s0}	[Pa]
mit K 6 - 50% offen	∆p _s	=	5.60	×	Δp_{s0}	[Pa]

 Δp_{s0} = statische Druckdifferenz ohne Drosselelement

Korrektur 'Schallleistung' in Abhängigkeit der Durchlassgrösse

□a	202×202	302×302	402×402	502×502	[mm]
ΔL _w	-1	0	+1	+2	[dB]

Beispiel

gegeben Typ = DDQ K 6 (mit Gegenlaufklappe 100% offen)

 $\mathbf{R_H} = 3.0 \text{ m}$

 $= 5.8 \, \text{m}$ $= 560 \text{ m}^3/\text{h}$ Lösung

 \Box **a** = 302×302 mm

 $\mathbf{v}_{\mathbf{eff}} = 3.0 \, \mathrm{m/s}$

 $\Delta \mathbf{p_s} = 3.8 \times 1.15 = 5 \text{ Pa}$ $\mathbf{L_w} = 27 \text{ dB(A)}$

 $L_{0.5} = 2.7 \text{ m}$

Korrekturtabellen für die Oktav-Mittenfrequenzen – Zuluft

Тур	Drosselstellung	f Тур	125	250	500	1k	2k	4k	8k	[Hz]
(iii)	flach 100, 75 und 50% offen	DD F 0 DDRQ F 0 DD F 5 DDRQ F 5	-2	+1	0	-6	-12	-20	< (-22)	
	25% offen	DD F 5 DDRQ F 5	-2	+4	-2	-7	-9	-11	< (-20)	[dB]
	konisch	DD K 0 DDRQ K 0	+1	-1	-3	-5	< (-11)	< (-18)	< (-22)	
DDRQ	100, 75, 50 und 25% offen	DD K 5 DDRQ K 5	+2	+4	0	-5	-5	-8	< (-22)	
Toleranzen der	Oktav-Korrekturen:	±4 [dB]								·

Тур	Duagaalatalluuru	f Typ	125	250	500	1k	2k	4k	8k	[Hz]
тур	Drosselstellung	Тур								
	flach 100, 75, 50 und 25% offen	DDQ F 0 DDQ F 6	0	+2	-3	-7	-14	< (-20)	< (-20)	
DDQ	konisch 100, 75 und 50% offen	DDQ K 0 DDQ K 6	+4	+6	-2	-5	-12	< (-20)	< (-20)	[dB]
	25% offen	DD K 6	-6	-4	-7	-3	-7	-13	< (-20)	
Toleranzen der	Oktav-Korrekturen:	±4 [dB]								

Beispiel

Gegeben

Beispiel von Seite 8, (DD F 5, 100% offen, jedoch anstelle von $\emptyset d = 302$ mm wird $\emptyset d = 402$ mm gewählt)

Gesucht

Pegel der Oktav-Mittenfrequenzen

Lösung

Schritt 1:

Grössen-Korrektur vornehmen, d.h.: $\mathbf{L_w} = \mathbf{L_w} \oslash d$ 302 mm = 39 dB(A) Korrektur für $\oslash d$ 402 mm = +1 $\mathbf{L_w} = 39 + 1 =$ **40 dB(A)**

Schritt 2:

Pegel der Oktav-Mittenfrequenzen berechnen

f	125	250	500	1k	2k	4k	8k	[Hz]
L _{wA} Ød = 402 mm	40	40	40	40	40	40	40	[dB(A)]
$\Delta L_{\mathbf{A}}$	-2	+1	0	-6	-12	-20	< (-22)	[dB]
L _{wOkt}	38	41	40	34	28	20	< 18	[dB]

1. Zuluft mit Anschlusskasten (Richtwerte)

		Anschluss-	DD /	DDRQ	DD K / DDRQ K			
		kasten			konisch			
Тур	Ød	Тур	fL_w	f∆p	fL_w	f∆p		
	152	AKH08 ZL-Ø160	0.97	2.7	1.12	2.7		
	202	AKH09 ZL-Ø160	1.00	2.8	1.50	3.6		
DD DDRQ	252	AKH01 ZL-Ø160	1.09	3.1	2.01	5.1		
	302	AKH02 ZL-Ø200	1.09	3.1	1.89	4.6		
	402	AKH03 ZL-Ø200	1.21	4.4	2.63	8.4		
	502	AKH04 ZL-Ø250	1.27	4.2	2.52	7.3		

Hinweis: Beim DDRQ und DDRQ K kann der Anschlusskasten bis zur Grösse AKH04 gewählt werden.

Beispiel Gegeben

- Zuluft
- DDRQ K 0 / 623×500 mit AKH04 ZL..., 1 × Ø 248 mm
- $v_{eff} = 2.5 \text{ m/s}$

Gesucht

- a) $L_w = ?$
- b) $\Delta p_s = ?$

Lösung aus Diagramm Seite 9

- a) $L_w = 20 \text{ dB(A)}$ Korrektur für AKH04 ZL: $fL_w = 2.52$ $L_w = 20 \times 2.52 = 50 \text{ dB(A)}$
- b) $\Delta \mathbf{p_s} = 2.5 \text{ Pa}$ Korrektur für AKH04 ZL: $f\Delta p_s = 7.3$ $\Delta p_s = 2.5 \times 7.3 = 18 \text{ Pa}$

2. Abluft mit Anschlusskasten

					DD / [DRQ			DD K / DDRQ K					
				fla	ch	_5.	元			kon	isch	-75	₹ <u></u>	
		Anschluss- kasten	F	0	F 5 –	F 5 – 100% F 5 – 50%		- 50%	K 0		K 5 – 100%		K 5 -	- 50%
Тур	Ød	Тур	Δ L _w	f∆ps	ΔLw	f∆ps	ΔLw	f∆ps	Δ L _w	f∆ps	Δ L _w	f∆ps	ΔL_{w}	f∆ps
	152	AKH08 AL-Ø160	- 5	1.10	-7	1.60	- 7	1.80	+ 9	6.00	- 5	11.00	-8	29.00
	202	AKH09 AL-Ø160	-3	1.40	- 5	1.85	- 5	2.10	+ 10	6.10	- 4	11.20	- 6	29.40
DD DDRQ	252	AKH01 AL-Ø160	+ 3	1.70	-2	2.13	-2	2.40	+ 11	6.10	- 3	11.45	0	29.60
	302	AKH02 AL-Ø200	+ 7	2.20	0	2.45	- 1	2.80	+ 12	6.15	-3	11.60	+ 3	33.60
	402	AKH03 AL-Ø200	+ 9	3.30	0	3.45	+ 4	4.55	+ 21	17.75	+ 8	22.00	+ 8	40.40
	502	AKH04 AL-Ø250	+ 8	2.10	- 1	2.40	+ 1	2.95	+ 22	17.50	+ 10	19.50	+ 10	40.40

Hinweis: Beim DDRQ und DDRQ K kann der Anschlusskasten bis zur Grösse AKH04 gewählt werden.

Beispiel Gegeben

- Abluft
- DDRQ K 5 / 598×200 (mit Schieberdrossel 100% offen) mit AKH09 AL, 1 × Ø 160 mm
- $v_{eff} = 3.0 \text{ m/s}$

Gesucht

- a) $L_w = ?$
- b) $\Delta p_s = ?$

Lösung aus Diagramm Seite 9

- a) $L_w = 44 \text{ dB(A)}$ Korrektur für AKH09 AL: $\Delta L_w = -4$ $L_w = 44 - 4 = 40 \text{ dB(A)}$
- b) $\Delta \mathbf{p_s} = 3.6 \text{ Pa}$ Korrektur für AKH09 AL: $f\Delta p_s = 11.2$ $\Delta p_s = 3.6 \times 11.2 = 40 \text{ Pa}$

3. Abluft ohne Anschlusskasten

Korrekturtabelle für Deckendiffusoren

Rund mit rundem Aussenrahmen Typ DD Rund mit quadratischer Deckenplatte Typ DDRQ

Abluft (nur Durchlass mit und ohne Schieberdrossel)

Basis:

Diagrammwerte von DD-Dimensionierung (Zuluft)

a) Schallleistung: $L_{wA AL} = L_{wA ZL} + \Delta L_{w}$

b) Druckverlust: $\Delta p_{SAL} = \Delta p_{SZL} \times f \Delta ps$

Abluft

			fla	nch		_		konisch -						
		F	0	F 5 –	100%	F 5 -	F 5 – 50%		K 0		K 5 – 100%		- 50%	
Тур	Ød	ΔL _w	f∆ps	ΔL _w	f∆ps	ΔL _w	f∆ps	ΔL _w	f∆ps	ΔL _w	f∆ps	ΔL _w	f∆ps	
	152	-14	1.10	-10	2.00	-7	7.50	-11	3.30	-8	3.80	-7	8.10	
DD	202	-12	1.15	-8	2.25	-5	8.10	-9	3.55	-6	4.05	-5	8.40	
	252	-5	1.20	-5	2.55	-3.5	8.95	-4	3.85	-3.5	4.35	-3	8.95	
	302	+1	1.25	-3	2.85	-2	9.70	+1	4.25	-2	5.00	-1	9.50	
DDRQ	402	+6	1.35	-1	3.1	0	10.55	+6	5.00	0	5.30	+1	10.35	
	502	+7	1.60	+1	2.85	+2	10.40	+7	6.15	+1	6.65	+2	10.35	

Beispiel Gegeben

- DD F 5 / 300 (mit Schieberdrossel 50% offen)
- $v_{eff} = 2.0 \text{ m/s}$

Gesucht

- a) $L_w = ?$ b) $\Delta p_s = ?$

Lösung aus Diagramm Seite 8

a) $L_{w} = 36 \text{ dB(A)}$

Korrektur für AKH... AL:
$$\Delta L_w = -2$$

 $L_w = 36 - 2 =$ **34 dB(A)**

Korrektur für AKH... AL:
$$f\Delta p_s = 9.70$$

$$\Delta p_{s} = 6 \times 9.70 = 58 \text{ Pa}$$

1. Zuluft mit Anschlusskasten

		Anschluss- kasten	flach _/.		konisch -			
Тур	□a	Тур	fL _w	f∆p	fL _w	f∆p		
	202	AKH09 ZL-Ø160	1.05	2.8	1.71	3.9		
DDQ	302	AKH02 ZL-Ø200	1.11	3.1	2.17	5.3		
	402	AKH03 ZL-Ø200	1.24	3.6	2.95	7.4		
	502	AKH04 ZL-Ø250	1.34	3.8	2.93	7.2		

Beispiel Gegeben

- Zuluft
- DDQ F 0 / 300×200 mit AKH09 ZL..., 1 × Ø 160 mm
- $v_{eff} = 3.5 \text{ m/s}$

Gesucht

- = ?
- = ? b) Δp_s

Lösung aus Diagramm Seite 10

- a) $L_{w} = 41 \text{ dB(A)}$
 - Korrektur für AKH09 ZL: fL_w =

$$L_{w} = 41 \times 1.05 = 43 \text{ dB(A)}$$

- b) $\Delta \mathbf{p_s} = 24 \text{ Pa}$ Korrektur für AKH09 ZL: $f\Delta p_s = 2.8$
 - $\Delta p_s = 24 \times 2.8 = 67 \text{ Pa}$

2. Abluft mit Anschlusskasten

			flach						konisch -					
		Anschluss- kasten	F 0		F 6 – 100%		F 6 – 50%		К0		K 6 – 100%		K 6 – 50%	
Тур	□а	Тур	$\Delta \mathbf{L_w}$	f∆ps	$\Delta \mathbf{L}_{\mathbf{w}}$	f∆ps	$\Delta \mathbf{L_w}$	f∆ps	$\Delta \mathbf{L_w}$	f∆ps	$\Delta L_{\mathbf{w}}$	f∆ps	$\Delta \mathbf{L_w}$	f∆ps
	202	AKH09 AL-Ø160	- 17	0.85	- 17	0.85	- 18	0.90	+ 3	3.80	+ 2	3.80	- 10	5.90
DDQ	302	AKH02 AL-Ø200	- 6	1.35	- 6	1.30	- 8	1.43	+ 4	3.80	+ 3	3.80	- 9	5.60
	402	AKH03 AL-Ø200	-3	2.60	- 3	2.55	- 6	0.78	+ 21	23.0	+ 12	26.0	+ 17	54.0
	502	AKH04 AL-Ø250	-2	1.85	-2	1.75	- 5	1.95	+ 23	22.0	+ 15	32.0	+ 20	54.0

Beispiel Gegeben

- Abluft
- DDQ K 0 / 300×200 mit AKH09 AL..., 1 × Ø 160 mm
- $v_{eff} = 3.0 \text{ m/s}$

Gesucht

- a) L_w = ?
- b) Δp_s = ?

Lösung aus Diagramm Seite 11

a) $L_{w} = 25 \text{ dB(A)}$

Korrektur für AKH09 AL: $\Delta L_w = +3$

$$L_w = 25 + 3 = 28 \text{ dB(A)}$$

b) $\Delta p_s = 3.8 \text{ Pa}$

Korrektur für AKH09 AL: $f\Delta p_s = 3.8$

$\Delta p_s = 3.8 \times 3.8 = 15 Pa$

3. Abluft ohne Anschlusskasten

Korrekturtabelle für Deckendiffusor

Quadratisch Typ DDQ

Basis: Diagrammwerte von DDQ-Dimensionierung (Zuluft)

- a) Schallleistung: $L_{wA AL} = L_{wA ZL} + \Delta L_{w}$
- b) Druckverlust: $\Delta p_{SAL} = \Delta p_{SZL} \times f \Delta ps$

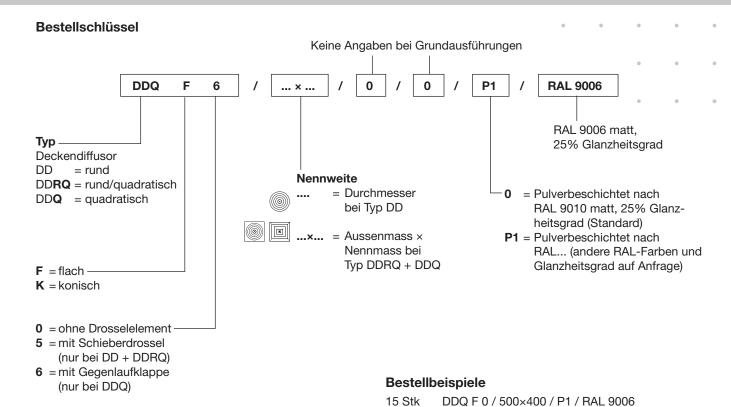
Abluft (nur Durchlass mit und ohne Gegenlaufklappe)

Abluft ohne Anschlusskasten

		flach							konisch						
		F	0	F 6 – 100%		F 6 – 50%		K 0		K 6 – 100%		K 6 – 50%			
Тур	□a	$\Delta L_{\mathbf{w}}$	f∆ps	$\Delta L_{\mathbf{w}}$	f∆ps	$\Delta L_{\mathbf{w}}$	f∆ps	ΔL _w	f∆p _s	$\Delta \mathbf{L_w}$	f∆ps	$\Delta \mathbf{L_w}$	f∆ps		
DDQ	202	< (-10)	0.85	< (-10)	0.85	< (-10)	0.90	< (-10)	1.50	-3	1.45	-9	1.95		
	302	-5	1.05	-5	1.0	-8	1.13	< (-10)	1.70	-2	1.60	-8	2.80		
	402	-2	1.30	-5	1.20	-6	1.28	< (-10)	1.90	0	1.85	-6	3.65		
	502	-1	1.30	-4	1.20	-5	1.28	< (-10)	1.90	+4	1.85	0	3.65		

Beispiel Gegeben

- Abluft
- DDQ K 6 / 400×300 (mit Gegenlaufklappe 100% offen)
- $v_{eff} = 3 \text{ m/s}$


Gesucht

- a) $L_w = ?$ b) $\Delta p_s = ?$

Lösung aus Diagramm Seite 11

- a) $L_{w} = 27 \text{ dB(A)}$ Korrektur für AKH... AL: $\Delta L_w = -2$
 - $L_{W} = 27 2 = 25 \text{ dB(A)}$
- b) $\Delta p_{s} = 3.8 \text{ Pa}$ Korrektur für AKH... AL: $f\Delta p_s = 1.60$ $\Delta p_{s} = 3.8 \times 1.60 = 6 \text{ Pa}$

Bestellinformationen

Ausschreibtext

Typ DD / DDRQ

Runde Deckendiffusoren mit Aussenrahmen oder runde Deckendiffusoren mit quadratischer Deckenplatte für den deckenbündigen Einbau mit gleichmässiger, kreisförmiger Luftführung, bestehend aus konzentrisch runden Lamellen und flachem, deckenbündigem Aussenrahmen. Ausführung flach oder konisch. Mit oder ohne Schieberdrossel für die Luftmengenregulierung. Befestigung mittels Zentralschraube.

Typ DDQ

Deckenluftdurchlässe quadratisch, vierseitig ausblasend, geeignet für die horizontale Lufteinführung (oder Abluft). Ausführung flach oder konisch.

Bestehend aus einem Frontrahmen mit Dichtungsband und ausgebildeten Luftlenklamellen. Mit oder ohne gegenläufige Mengenregulierung (Gegenlaufklappe). Befestigung mittels Zentralschraube.

Anschlusskasten zu Typ DD / DDRQ und DDQ (siehe Prospekt L-04-1-31d)

Standard-Anschlusskasten aus verzinktem Stahlblech mit integrierter Traverse für Zentralschraube M6 zur einfachen und schnellen Montage des Deckenluftdurchlasses. Ein Anschlussstutzen mit Mengeneinstellung für Wickelfalzrohroder Schlauchmontage ist enthalten, der Zuluftkasten beinhaltet zusätzlich ein Luftverteilelement.

Material

20 Stk

15 Stk

20 Stk

Diffusor

Stahl, pulverbeschichtet nach RAL 9010 matt, 25% Glanzheitsgrad.

DDQ K 6 / 600×500

DDRQ K 5 / 623×400

DD F 5 / 500 / P1 / RAL 9006

Drosselelement

Schieberdrossel Aluminium roh

Gegenlaufklappe Rahmen: verzinktes Stahlblech Lamellen: Aluminium roh

Anschlusskasten

- Verzinktes Stahlblech
- Bei Lieferung mit Typ AKH... ZL MO entfällt die Gegenlaufklappe.

Option

- Andere RAL-Farben